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Simulation of unsteady turbulent flows around moving
aerofoils using the pseudo-time method
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SUMMARY

The pseudo-time formulation of Jameson has facilitated the use of numerical methods for unsteady flows,
these methods have proved successful for steady flows. The formulation uses iterations through
pseudo-time to arrive at the next real time approximation. This iteration can be used in a straightforward
manner to remove sequencing errors introduced when solving mean flow equations together with another
set of differential equations (e.g. two-equation turbulence models or structural equations). The current
paper discusses the accuracy and efficiency advantages of removing the sequencing error and the effect
that building extra equations into the pseudo-time iteration has on its convergence characteristics. Test
cases used are for the turbulent flow around pitching and ramping aerofoils. The performance of an
implicit method for solving the pseudo-steady state problem is also assessed. Copyright © 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

A range of methods has been developed for solving the steady state Reynolds-averaged
Navier–Stokes (RANS) equations. These include multigrid methods, local time stepping and
approximate iteration schemes, all of which are concerned with either reducing the number of
time steps to convergence or reducing the cost of these steps. For unsteady flows, the number
of time steps required is fixed by the need to satisfactorily follow the evolution of the flow.
There is no direct generalization of the successful methods from steady state problems since
these destroy the time accuracy, which is the essential requirement of the calculation.

A fundamental design criterion for a numerical method to solve the unsteady RANS
equations can be stated as
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‘The time step is chosen to ensure time accuracy with no efficiency or stability restriction.’

The idea put forward by Jameson [1] established a framework, referred to here as pseudo-time,
in which this can be achieved. The calculation of the flow solution at each time step involves
the solution of a reformulated steady state problem, which can be computed using the
acceleration techniques that have proved successful for steady flows. Applications of this
approach for inviscid compressible flows include using explicit time stepping [2], multigrid and
unstructured meshes [3] and an implicit solver [4]. The pseudo-time method has been applied
for the simulation of turbulent flow around oscillating wings, where the pseudo-time iterations
are frequently referred to as sub-iterations. These sub-iterations usually consist of factored
implicit steps such as alternating direct implicit (ADI) [7] or LU-decomposition [8,9]. The
calculation times quoted for these applications are often very lengthy, indicating the potential
benefits of making the simulation more efficient.

When two-equation turbulence closure is used, the solution as one system [10] (i.e. fully
coupled) of the mean flow and turbulence equations has disadvantages. It is often desirable to
use different solution methods for the mean and turbulent flow equations. For example, an
implicit method can be used to overcome the stiffness caused by the source term in the
turbulence equations while an explicit method is used for the mean flow equations [11]. The
alternative is to solve the equations in a sequenced fashion, with the mean flow values frozen
for the solution of the turbulence equations and then the turbulent values frozen for the
solution of the mean flow. This method, referred to herein as sequenced in real time, is the
most commonly used coupling approach. It has the practical advantage of allowing codes for
the mean flow and turbulence equations to be used in a modular fashion with minimal
interaction, simplifying implementation and testing. An example application is the study of
dynamic stall using the k–e turbulence model [9]. If the sequencing is done in real time for
unsteady calculations then the turbulent and mean flow values are always out of phase by one
time step, introducing an additional source of error into the calculation. However, if the
solution is sequenced in pseudo-time rather than real time then the advantages of the decoupled
solution are retained and, at convergence, there is no sequencing error.

This paper investigates the use of the pseudo-time method to remove sequencing errors for
the solution of turbulent flows. The advantages of this are examined for two turbulent flows
over the pitching and ramping NACA0012 aerofoils. The paper continues with a description
of the numerical formulation, followed by a discussion of the test cases, with comparison being
made between the present results and experimental data. This comparison highlights the
sensitivity of the computed moment history to the shock location, and hence the flow
modelling, used. Issues surrounding the convergence to the pseudo-steady state are highlighted
in Section 4 and a comparison of the performance of the two coupling methods is then given,
followed by conclusions.

2. NUMERICAL FORMULATION

A model for the mean flow quantities in a planar, turbulent, compressible and unsteady flow
is given by the RANS equations
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where w= (r, ru, r6, e).
The influence of turbulence on the mean flow can be described by using the Boussinesq

approximation, which relates the Reynolds’ stress tensor linearly to the strain rate tensor. The
constant of proportionality is called the eddy viscosity mt. The calculation of the eddy viscosity
requires additional relations, which include mean flow values. A popular family of methods
consists of two differential equations that balance the convection, diffusion, production and
dissipation of quantities associated with the turbulence. For example, the k–v model [13] is
given by
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where q= (rk, rv). The source term on the right hand side of the equations describes
production and dissipation of k and v. All of the vectors in Equation (2) involve mean flow
values. The turbulence is characterized in these equations by k and v with the eddy viscosity
given by mt=rk/v.

The semi-discrete form of Equations (1) and (2) can be written as

dwi, j

dt
=Ri, j

and

dqi, j

dt
=Qi, j

where R and Q represent the discretization of the convective and diffusive terms. In general,
multiblock grids are used in the current work although single block grid notation is used to
avoid unnecessary complexity in the description of the method. The convective fluxes are
discretized by Osher’s method together with MUSCL extrapolation and Von Albada limiter,
and the diffusive terms by using contour integrations based on the divergence theorem [12].
The source terms in the k–v model are evaluated at cell centres. The cell residuals R and Q
depend on the values of w and q in 13 neighbouring cells. Denoting the vector whose
components consist of the mean and turbulent flow quantities in these 13 cells by w̃i, j and q̃i, j,
the spatial discretization can be written as Ri, j=Ri, j(w̃i, j, q̃i, j) and Qi, j=Qi, j(w̃i, j, q̃i, j).

Following the pseudo-time formulation [1], the updated mean flow solution is calculated by
solving the steady state problems

R*i, j=
3wi, j

n+1−4wi, j
n +wi, j

n−1

2Dt
+Ri, j(w̃i, j

km, q̃i, j
kt )=0 (3)
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Q*i, j=
3qi, j

n+1−4qi, j
n +qi, j

n−1

2Dt
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lm ,q̃i, j
lt )=0 (4)

Here km, kt, lm and lt give the time level of the variables used in the spatial discretization. Note
that for the problems in this paper the grid is moved rigidly, but if grid deformation was
required then time varying areas would be required [4] in the expression for the real time
derivative in Equations (3) and (4). If km=kt= lm= lt=n+1, then the mean and turbulent
quantities are advanced in real time in a fully coupled manner. However, if km= lm= lt=n+1
and kt=n then the equations are advanced in sequence in real time, i.e. the mean flow is
updated using frozen turbulence values and then the turbulent values are updated using the
latest mean flow solution. This has the advantage that the only modification, when compared
with the laminar case, to the discretization of the mean flow equations is the addition of the
eddy viscosity from the previous time step. The turbulence model only influences the mean
flow solution through the eddy viscosity and so any two-equation models can be used without
modifying the mean flow solver. Hence, the implementation is simplified by using a sequenced
solution in real time. However, the uncoupling could adversely effect the stability and accuracy
of the real time stepping, with the likely consequence of limiting the size of the real time step
that can be used.

Equations (3) and (4) represent a coupled non-linear system of equations. These can be
solved by introducing an iteration through pseudo-time t to the steady state, as given by

wi, j
n+1,m+1−wi, j

n+1,m

Dt
+

3wi, j
km−4wi, j

n +wi, j
n−1

2Dt
+Ri, j(w̃i, j
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kt )=0 (5)
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2Dt
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where the mth pseudo-time iterate at the n+1th real time step are denoted by wn+ l,m and
qn+1,m respectively. The iteration scheme used only effects the efficiency of the method, and
hence, we can sequence the solution in pseudo-time without compromising accuracy. For
example, using explicit time stepping we can calculate wn+1,m+ l using km=n+1, m and
kt=n+1, m and qn+ l,m+1 using lm=n+1, m+1 and lt=n+1, m. For implicit time stepping
in pseudo-time we can use km= lm= lt=n+1, m+1 and kt=n+1, m. In both of these cases
the solution of the equations is decoupled by freezing values, but at convergence the real time
stepping proceeds with no sequencing error. It is easy to recover a solution which is sequenced
in real time from this formulation by setting kt=n throughout the calculation of the
pseudo-steady state. This facilitates a comparison of the current pseudo-time sequencing with
the more common real time sequencing.

3. METHOD FOR CALCULATING PSEUDO-STEADY STATE

In this paper we use an implicit method to solve the pseudo-steady state problem. Using the
notation of the previous section one pseudo-time step of the mean and turbulent solutions can
be written
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These equations represent a non-linear system for wi, j
n+1,m+1 and qi, j

n+1,m+1 and are simplified
by linearizing Ri, j(w̃i, j

n+1,m+1, q̃i, j
n+1,m) and Qi, j(w̃i, j

n+1,m+1, q̃i, j
n+1,m+1) in pseudo-time [4]. The

resulting linear systems are solving by a preconditioned conjugate gradient type method. Block
incomplete lower upper (BILU) factorization is used as a preconditioner. It has been found to
be more efficient to use an approximate linearization that saves memory and the cost of the
matrix–vector products by reducing the number of non-zero elements in the coefficient matrix
of the linear system. Full details of the method are identical to those used for solving the
unsteady Euler equations [4].

The basic accuracy of the code has been tested for a number of applications. In Reference
[5] steady state inviscid and laminar flow results for a NACA0012 aerofoil were compared with
previously published results. In Reference [4] comparisons with experiment were made for
three pitching cases over a NACA0012 aerofoil and also the steady state solution for the
Williams two-element aerofoil was compared with a previously published potential flow
solution. Detailed evaluation of the code for supersonic slender body aerodynamics and base
flows has been made in Reference [6].

4. TEST CASES

The influence of solution coupling is considered for two test cases involving transonic flow
over the NACA0012 aerofoil. For both cases the aerofoil rotates about the point at a quarter
chord.

For the first case, called case CT2, the incidence as a function of time is given by

a(t)=am+a0 sin(vpt)

where am=3.16°, a0=4.59° and vp=0.16. The free stream Mach number is 0.6 and the
Reynolds number is 4.8 million.

A shock wave forms as the aerofoil pitches up and then weakens and disappears during the
downward part of the cycle, as is evident from the pressure contours shown in Figure 1. The
flow is fully attached throughout the motion. Excellent prediction of the pressure distributions
(shown in Figure 2) and normal force and moment histories are possible and have been
achieved here. Grid refinement was carried out on a sequence of grids derived from a fine grid
with 513 points in the streamwise, and 129 points in the normal directions respectively.
Medium and coarse grids were extracted from the fine grid by successively removing every
second point. The medium grid was found to give a spatially well converged solution, as
indicated in Figure 3 for the moment history. The time step refinement shown in Figure 4
shows that temporally 20 steps per cycle gives good accuracy. The comparison with experiment
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Figure 1. Pressure contours for case CT2.

[14] for the moment history is shown in Figure 5, on the fine grid using 20 steps per pitching
cycle.

Several numerical studies of this case based on the Euler equations have suggested that the
moment centre given in the experimental description is likely to be in error. The time history
predicted by the Euler equations is also shown in Figure 6 and shows the discrepancy with the
measured data when calculating the moment about 0.25c (where c is the aerofoil chord length),
which is the stated location for the measurements. The difference becomes most marked at the
larger angles of incidence when the shock wave is present. The moment location which
consistently gives closer comparison between inviscid computations and measured values is
0.273c [2,4,15,16]. However, for the current turbulent results, it was found that using the
quoted experimental moment centre at 0.25c gives close agreement with experimental
measurements.
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Figure 2. Instantaneous pressure distributions for case CT2.

The turbulent simulation predicts the shock wave further upstream than the inviscid one due
to the displacement effect of the boundary layer (see Figure 7). Note that in both cases the
shock is located upstream of the point 0.25c. The effect of moving the moment centre and the
shock closer together is to decrease the net nose-up moment. Since the inviscid calculation
predicts the shock wave location to be slightly closer to the moment centre than in reality, the
main effect of moving the moment centre to 0.273c for the inviscid results is to compensate for
this error when calculating the moment. This has the effect of increasing the computed values
of moment. The shock location from the present calculations is closer to the measured
location, and hence, this correction is not necessary. A smaller moment is computed on the
coarse grid since the jump across the shock is underpredicted. This effect can again be
compensated for by moving the moment centre to 0.273c. A previously published turbulent
result [17] underpredicts the jump across the shock due to the coarseness of the grid, and
hence, better agreement for this calculation is obtained between computed and measured
moment values if the moment centre is moved aft to 0.273c.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 585–604
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Figure 3. Grid convergence for integrated moment for case CT2.

The second test case involves a ramping motion and is referred to as CT8. The incidence is
given by

a(t)=a0+krt

where a0= −0.01° and kr=0.85° per time unit. The free stream Mach number is 0.59 and the
Reynolds number is 4.5 million.

A shock wave strengthens near the leading edge (see Figure 8) as the aerofoil pitches up until
the flow is induced to separate at around 8.3°. The separated region grows (see Figure 9 and
the shock weakens and moves upstream until stall is reached just after 13°. The comparison of
the computed pressure distributions with measured values indicates reasonable agreement until
separation becomes the dominant flow feature, after which the linear turbulence modelling is
inadequate (see Figure 10). The integrated forces and pressure distributions show good
agreement with experiment up to separation, as shown in Figure 11. The location of stall is
predicted earlier than observed in experiment. A grid refinement study, using the same
methodology as for the pitching case, showed that the medium grid gives a well converged
spatial solution, as shown in Figure 12. A time step leading to a motion of 0.170° gives a
temporally well-converged solution, as shown in Figure 13.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 585–604
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Figure 4. Convergence with number of real time steps per cycle for integrated moment for case CT2.

5. CONVERGENCE TO PSEUDO-STEADY STATE

The convergence to the updated flow solution is monitored by the ratio of the pseudo-time to
the real time update

wn+1,m+1−wn+1,m2

wn+1,m+1−wn2

Values of 10−2 and 10−3 for the tolerance were used for both test problems and were found
to give similar results. A value of 10−2 means that the latest pseudo-time update is less than
1 per cent of the resulting estimate to the real time update. The calculation with a tolerance of
10−3 takes roughly twice as long compared with using 10−2, the value used for the results
shown in this paper.

For all steady state time stepping methods it is advantageous to start the iterations as close
to the converged solution as possible. For the implicit method it is necessary to have a good
approximation to the converged solution before using large Courant–Friedrich–Lewy (CFL)
numbers. For the pseudo-steady state problems the previous time step (i.e. wn+1,1=wn)
provides an obvious choice for the starting solution. In an attempt to obtain a better initial
solution, the use of extrapolation from previous real time levels was tested. The initial
pseudo-time iterate was obtained by extrapolating the solutions from the two previous time
levels (i.e. wn+1,1=2wn−wn− l). This approach was found to lead to negative pressure values
in the vicinity of large shock motions and was rejected.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 585–604
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Figure 5. Comparison of integrated moment with experiment for case CT2.

The average cost of the pseudo-steady state calculation per real time step is less than 100
residual evaluations. This represents a cheap calculation when compared with normal flow
steady state problems and indicates that using the solution from the previous time step as an
initial condition for the next time step is satisfactory.

For the pseudo-steady state calculation method to be satisfactory the cost should decrease
with an increasing time step, allowing the choice of time step from accuracy considerations
alone. This cost is shown in Table I for various sizes of time step and it can be seen that the
CPU time required does indeed decrease with increasing time step. The CPU time is expressed
in terms of work units, where one work unit is the time required for one residual evaluation.
The change in flow values between time steps would be expected to increase with the real time
step, and hence, also the difficulty in obtaining the pseudo-steady state. It can be seen in Table
I that as the time step is increased by a factor of 8 for the pitching case the average number
of pseudo-time steps required to solve each steady state problem less than doubles. The cost
of each pseudo-time iteration is also insensitive to the real time step used, and hence, the
reduction in cost of the calculation as the time step is increased is due to the reduction in the
number of real time steps being carried out. Similar conclusions are drawn for the ramping
case.

It can be seen in Table II that the cost of the solution increases relatively as the grid is
refined. This is due to the increasing number of pseudo-steps required to solve the pseudo-
steady state problem. The cost of the linear solves does not increase with the grid refinement,
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indicating the good quality of the BILU preconditioning. The influence of the complexity of
the flow features on the difficulty in obtaining the pseudo-steady state is of interest when
considering the extension to more complex applications. To examine this, the number of
pseudo-steps is plotted as a function of incidence in Figures 14 and 15. For the pitching case,
a clear increase in the number of pseudo-steps is observed as the shock wave develops while
the aerofoil is pitching up. However, the cost of the steady state calculation only varies by a
factor of two throughout the cycle.

For the ramping case, there is again an increase in the number of pseudo-steps required as
the shock wave forms and strengthens. The cost then decreases as the separated region grows
and the shock wave disappears. This indicates that shock waves are more important for
determining the cost of solving the pseudo-steady state problem than regions of flow
separation.

6. COMPARISON BETWEEN SEQUENCING IN REAL AND PSEUDO-TIME

The current formulation allows the use of solutions that are sequenced or coupled (i.e.
sequenced in pseudo-time) in real time, and hence, the influence of the real time sequencing
used in the majority of unsteady turbulent flow simulations can be assessed.

For the pitching case, no solution was obtained using a sequenced solution in real time for
10 and 20 steps per cycle. The agreement between the solutions obtained when using 20 steps

Figure 6. Predicted inviscid and turbulent histories for integrated moment for case CT2.
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Figure 7. Predicted inviscid and turbulent pressure distributions for case CT2.

per cycle for sequencing in real and pseudo-time is close up to the time when the solution
which is sequenced in real time fails. This happens at the edge of the boundary layer after the
shock wave where the large changes in flow values between real time steps due to the shock
motion cause problems when frozen flow values are used. The difference between the coupled
and sequenced solutions is largest in the boundary layer after the shock wave. The solution
obtained when using 40 steps per cycle for real and pseudo-time sequenced solutions compare
well, suggesting that the main effect of using a sequenced solution in real time for this case is
on robustness and not accuracy, i.e. when the sequencing has an influence it causes the
calculation to fail.

For the ramping case, no solution is obtained beyond stall when sequencing in real time for
time steps resulting in a motion of greater than 0.170°. The solution that was obtained when
sequencing in real time for a smaller time step (0.085° per step) is well converged with respect
to the time step. Convergence is achieved at a larger time step when sequencing in pseudo-time
(0.170° per step), suggesting that there is a reduction in accuracy from using the real time
sequencing for this case.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 585–604
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Figure 8. Pressure contours for case CT8.

Figure 9. Streamlines for case CT8.
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Figure 10. Instantaneous pressure distributions for case CT8.

There are, therefore, two malign effects encountered for these test cases when sequencing the
solution in real time. First, when a shock motion is the most important feature in the flow the
sequencing leads the solution to fail for large time steps. This can be explained by the large
changes in flow values due to shock motions causing large errors if variables are frozen. For
the ramping case a reduction in accuracy is noted as well, which is due to the significant changes
in the flow in the separated region leading to errors if values are frozen. These errors are not
large enough to cause the solution to fail, as is the case when shock motions are present.

It is interesting to observe the influence of the coupling on the pseudo-steady state
convergence. Using 40 steps per cycle for the pitching case the average number of pseudo-steps
per real time step required for the mean flow solution sequenced in real and pseudo-time is
almost identical. This indicates that the solution coupling when using sequencing in pseudo-
time does not make the mean flow pseudo-steady state problem significantly harder. This is due
to the small influence that a small change in a diffusion coefficient (the eddy viscosity) is likely
to have on the mean flow solution. However, the turbulent solution is observed to be 20 pr cent
slower when the solutions are sequenced in pseudo-time. This reflects the much larger influence
on the solution that changing values of r, u and 6 during the iteration in the con-
served variables, convective and diffusive fluxes and the source term is likely to have on the

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 585–604
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Figure 11. Comparison of integrated moment with experiment for case CT8.

Figure 12. Grid convergence for integrated moment for case CT8.
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Figure 13. Convergence with number of real time steps per cycle for integrated moment for case CT8.

convergence of k and v. It should be noted, however, that since we can obtain an accurate
solution using 20 steps per cycle using the solution which is sequenced in pseudo-time as
compared with 40 steps per cycle for the real time sequenced method, the pseudo-time
sequenced method still shows a clear advantage in terms of efficiency. Similar conclusions
apply for the ramping case.

Table I. Effect of the size of the time step on the flow solver efficiency.

Case Number of time CPU timeAverage number of
pseudo-time stepssteps (in work units)
per real time step

80/cycle 31 5666/cycleCT2
Medium grid 40/cycle 36 3265/cycle

20/cycle 44 1956/cycle
1209/cycle5410/cycle

18 12 528CT8 0.042°/step
8074230.085°/stepMedium grid

0.170°/step 29 5196
0.340°/step 36 3343

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 585–604
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7. CONCLUSIONS

Results for the turbulent flow over the NACA0012 aerofoil in pitch and ramp have been
presented. These test cases have been used to assess various aspects of the numerical method
used for the simulation.

The main conclusions for the current method and test cases are:

� The pseudo-time iterations can be stopped when the pseudo-time update has been reduced
to less than 1 per cent of the corresponding real time update.

Table II. Effect of grid refinement on the flow solver efficiency.

Average number ofGrid CPU timeCase
(in work units)pseudo-time steps

per real time step

27 1154/cycleCT2 Coarse
1956/cycle44Medium20 steps/cycle

Fine 63 2840/cycle

CT8 355723Coarse
5196Medium0.170°/step 29

Fine 42 5341

Figure 14. Pseudo-steps required at points around the pitching cycle for CT2 using CFL=50 and
approximately 20 real time steps per cycle.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 585–604
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Figure 15. Pseudo-steps required at points during the ramping cycle for CT8 using CFL=100 and 0.170°
per step.

� The safest initial iterate for the pseudo-time solution is the converged solution from the
previous time step, using an extrapolated solution can lead to robustness problems when
using large time steps.

� Solution sequencing in pseudo-time is preferable to sequencing in real time from an
accuracy and robustness point of view.

� The cost of solving the mean flow problem is very similar, whether the solution is
sequenced in real or pseudo-time.

� Shock motions increase the expense of the pseudo-time solution, flow separation does not
for the current cases.

� Using a moment centre at the location given in the experimental description of the pitching
test case gives good agreement with measured values, in contrast to Euler results.

The promise of doing time-accurate turbulent flow simulations within the pseudo-time
framework has been demonstrated. The generality of these conclusions for more complex test
cases is being tested.
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APPENDIX A. NOMENCLATURE

aerofoil chordc
Cm pitching moment coefficient

total energye
convective fluxes for mean flowfi, gi

f6, g6 diffusive fluxes for mean flow
turbulent convective fluxesfT

i , gT
i

turbulent diffusive fluxesfT
6 , gT

6

k turbulent kinetic energy
da/dt for ramping casekr

turbulent flow flux residualQi,j

Q*i,j turbulent flow unsteady residual
mean flow flux residualRi,j

mean flow unsteady residualR*i,j
q turbulent conservative variables

vector of conserved turbulent variables in cells which contribute to Qi,jq̃i, j

turbulent source termS
t time

Cartesian velocity componentsu, 6
mean flow conservative variablesw

w̃i, j vector of conserved mean flow variables in cells which contribute to Ri,j

x, y Cartesian co-ordinates

Greek letters
angle of attacka

mean angleam

a0 amplitude of oscillation
eddy viscositymt

densityr

vp angular frequency
turbulent dissipation rate of kv

real time stepDt
pseudo-time stepDt

Subscripts
computational celli, j

� freestream conditions

Superscripts
time level of the approximation in pseudo-timem
time level of the approximation in real timen
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